Deadly rinderpest virus today declared eradicated from the earth–‘greatest achievement in veterinary medicine’

At OIE, ILRI's Jeff Mariner and others responsible for the eradication of rinderpest

At the 79th General Session of the United Nations World Organisation for Animal Health (OIE), in Paris in May 2011, ILRI’s Jeff Mariner (second from right) stands among a group of distinguished people heading work responsible for the eradication of rinderpest, a status officially declared at this meeting (image credit: OIE).

Several world bodies are celebrating what is being described as ‘the greatest achievement in veterinary medicine’: the eradication of only the second disease from the face of the earth.

The disease is rinderpest, which means ‘cattle plague’ in German. It kills animals by a virus—and people by starving them through massive losses of their livestock.

‘In the nineteenth and twentieth centuries,’ reports the United Nations Food and Agriculture Organization (FAO), ‘the disease devastated parts of Africa, triggering extensive famines. . . . After decades of efforts to stamp out a disease that kept crossing national borders, countries and institutions agreed they needed to coordinate their efforts under a single, cohesive programme. In 1994, the Global Rinderpest Eradication Programme (GREP) was established at the UN Food and Agriculture Organization (FAO), in close association with the World Organization for Animal Health (OIE).

‘Excellent science, a massive vaccination effort, close international coordination and the commitment of people at all levels have helped make rinderpest eradication possible.

‘On June 28, 2011, FAO’s governing Conference will adopt a resolution officially declaring that rinderpest has been eradicated from animals worldwide. The successful fight against rinderpest underscores what can be achieved when communities, countries and institutions work together.’

Nobel Laureate Peter Doherty

Australian Peter Doherty, 1996 winner of the Nobel Prize for Medicine who served on the board of trustees of the International Laboratory for Research on Animal Diseases (ILRAD), a predecessor of  ILRI (photo credit: published on the Advance website).

Australian Peter Doherty, an immunologist who is the only veterinarian to win the Nobel Prize, for Physiology or Medicine, in 1996, and who served as chair of the board of trustees research program of the International Laboratory for Research on Animal Diseases (ILRAD), a predecessor of the International Livestock Research Institute (ILRI), is attending the FAO ceremonies this week. In an interview with FAO, he said:

Vaccine research is currently a very dynamic area of investigation and with sufficient investment and the enthusiastic participation of industry partners at the “downstream” end, we can achieve even better vaccines against many veterinary and human diseases.

The Washington Post in May reported that ‘the World Organization for Animal Health, at its annual meeting in Paris on Wednesday, accepted documentation from the last 14 countries that they were now free of rinderpest. The organization, which goes by its French acronym, OIE, was started in 1924 in response to a rinderpest importation in Europe.

‘The most recent recorded outbreak occurred in Kenya in 2001. Much of the past decade has been spent looking for new cases, in domesticated animals and in the wild, wandering herds of ungulates, or hoofed animals, in East Africa. The last place of especially intense surveillance was Somalia, where the final outbreak of smallpox occurred in 1977.

‘“There are a huge number of unsung heroes in lots of countries that made this possible,” said Michael Baron, a rinderpest virologist at the Institute for Animal Health in Surrey, England. “In most places, they were ordinary veterinary workers who were doing the vaccination, the surveillance, the teaching.”

‘Three things made rinderpest eradicable. Animals that survived infection became immune for life. A vaccine developed in the 1960s by Walter Plowright, an English scientist who died last year at 86, provided equally good immunity. And even though the virus could infect wild animals, it did not have a reservoir of host animals capable of carrying it for prolonged periods without becoming ill.

‘In 1994, the FAO launched an eradication program that was largely financed by European countries, although the United States, which never had rinderpest, also contributed money. The effort consisted of massive vaccination campaigns, which were made more practicable when two American researchers made a version of the Plowright vaccine that required no refrigeration. . . .’

One of those researchers was Jeffrey Mariner, now working at ILRI, in Nairobi, Kenya. Mariner also helped in surveillance work ‘with a technique called “participatory epidemiology” in which outside surveyors meet with herdsmen and ask open-ended questions about the health of their animals and when they last noticed certain symptoms.

‘“It was local knowledge that really helped us trace back the last places where transmission occurred—sitting down underneath a tree in the shade, listening to storytelling,” said Lubroth, of the FAO. . . .’

Read the whole article in the Washington Post, Rinderpest, or ‘cattle plague,’ becomes only second disease to be eradicated, 27 May 2011.

Read FAO’s interview of Peter Doherty: Healthier animals, healthier people, June 2011.

In the crosshairs of hunger and climate change: New ILRI-CCAFS study maps the global hotspots

Please find a corrected and revised statement below, along with a link to download revised maps here: http://ccafs.cgiar.org/resources/climate_hotspots. All edits to the original article posted on this blog are reflected in RED and BOLDFACE below.

Five per cent reduction in crop season sensitivity to change capacity to cope: Corrected version

Five per cent reduction in crop season sensitivity to change capacity to cope: Corrected 13 Jul 2011 (map credit ILRI/CCAFS/Notenbaert).

A new study out today reveals future ‘hotspots’ of risk for hundreds of millions whose food problems are on a collision course with climate change. The scientists conducting the study warn that disaster looms for parts of Africa and all of India if chronic food insecurity converges with crop-wilting weather. They went on to say that Latin America is also vulnerable.

The red areas in the map above are food-insecure and intensively farmed regions that are highly exposed to a potential five per cent or greater reduction in the length of the growing season. Such a change over the next 40 years could significantly affect food yields and food access for 369 million people—many of them smallholder farmers—already living on the edge. This category includes almost all of India and significant parts of West Africa. While Latin America in general is viewed as having a ‘high capacity’ to cope with such shifts, there are millions of poor people living in this region who very dependent on local crop production to meet their nutritional needs (map credit: ILRI-CCAFS/Notenbaert).

This study matches future climate change ‘hotspots’ with regions already suffering chronic food problems to identify highly-vulnerable populations, chiefly in Africa and South Asia, but potentially in China and Latin America as well, where in fewer than 40 years, the prospect of shorter, hotter or drier growing seasons could imperil hundreds of millions of already-impoverished people.

The report, Mapping Hotspots of Climate Change and Food Insecurity in the Global Tropics, was produced by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). The work was led by a team of scientists at the International Livestock Research Institute (ILRI) responding to an urgent need to focus climate change adaptation efforts on people and places where the potential for harsher growing conditions poses the gravest threat to food production and food security.

The researchers pinpointed areas of intense vulnerability by examining a variety of climate models and indicators of food problems to create a series of detailed maps. One shows regions around the world at risk of crossing certain ‘climate thresholds’—such as temperatures too hot for maize or beans—that over the next 40 years could diminish food production. Another shows regions that may be sensitive to such climate shifts because in general they have large areas of land devoted to crop and livestock production. And finally, scientists produced maps of regions with a long history of food insecurity.

Future of Pastoralism in Africa Conference

ILRI scientist Polly Ericksen, lead author of the hotspots study (photo credit: ILRI/MacMillan).

‘When you put these maps together they reveal places around the world where the arrival of stressful growing conditions could be especially disastrous,’ said Polly Ericksen, a senior scientist at ILRI, in Nairobi, Kenya and the study’s lead author. ‘These are areas highly exposed to climate shifts, where survival is strongly linked to the fate of regional crop and livestock yields, and where chronic food problems indicate that farmers are already struggling and they lack the capacity to adapt to new weather patterns.’

‘This is a very troubling combination,’ she added.

For example, in large parts of South Asia, including almost all of India, and parts of sub-Saharan Africa—chiefly West Africa—there are 265 million food-insecure people living in agriculture-intensive areas that are highly exposed to a potential five per cent decrease in the length of the growing period. Such a change over the next 40 years could significantly affect food yields and food access for people—many of them farmers themselves—already living on the edge.

Higher temperatures also could exact a heavy toll. Today, there are 170 million food-insecure and crop-dependent people in parts of West Africa, India and China who live in areas where, by the mid-2050s, maximum daily temperatures during the growing season could exceed 30 degrees Celsius (86 degrees Fahrenheit). This is close to the maximum temperature that beans can tolerate, while maize and rice yields may suffer when temperatures exceed this level. For example, a study last year in Nature found that even with optimal amounts of rain, African maize yields could decline by one percent for each day spent above 30ºC.

Regional predictions for shifts in temperatures and precipitation going out to 2050 were developed by analyzing the outputs of climate models rooted in the extensive data amassed by the Fourth Assessment Report (AR4) from the United Nations Intergovernmental Panel on Climate Change (IPCC). Researchers identified populations as chronically food-insecure if more than 40 per cent of children under the age of five were ‘stunted’—that is, they fall well below the World Health Organization’s height-for-age standards.

CCAFS poverty and climate change hotspots presentation: Wiebke Foerch and Patti Kristjanson of CCAFS

CCAFS staff members Wiebke Foerch, based at ILRI, and Patti Kristjanson, based at the World Agroforestry Centre, hold discussions after ILRI’s Polly Ericksen presents her findings on poverty and climate change hotspots at the World Agroforestry Centre in May 2011 (photo credit: ILRI/MacMillan).

‘We are starting to see much more clearly where the effect of climate change on agriculture could intensify hunger and poverty, but only if we fail to pursue appropriate adaptation strategies,’ said Patti Kristjanson, a research theme leader at CCAFS and former agricultural economist at ILRI. ‘Farmers already adapt to variable weather patterns by changing their planting schedules or moving animals to different grazing areas. What this study suggests is that the speed of climate shifts and the magnitude of the changes required to adapt could be much greater. In some places, farmers might need to consider entirely new crops or new farming systems.’

Crop breeders at CGIAR centres around the world already are focused on developing so-called ‘climate ready’ crop varieties able to produce high yields in more stressful conditions. For some regions, however, that might not be a viable option—in parts of East and Southern Africa, for example, temperatures may become too hot to maintain maize as the staple crop, requiring a shift to other food crops, such as sorghum or cassava, to meet nutrition needs. In addition, farmers who now focus mainly on crop cultivation might need to integrate livestock and agroforestry as a way to maintain and increase food production.

CCAFS Bruce Campbell following Andy Jarvis' seminar on CCAFS

Bruce Campbell, coordinator of the CGIAR program ‘Climate Change, Agriculture and Food Security (CCAFS)’, based in Copenhagen, talks with guests at a seminar given about CCAFS by Andy Jarvis at ILRI’s Nairobi campus on 13 May 2011 (photo credit: ILRI/MacMillan).

‘International trade in agriculture commodities is also likely to assume even more importance for all regions as climate change intensifies the existing limits of national agriculture systems to satisfy domestic food needs,’ said Bruce Campbell, director of CCAFS. ‘We have already seen with the food price spikes of 2008 and 2010 that food security is an international phenomenon and climate change is almost certainly going to intensify that interdependence.’

Ericksen and her colleagues note that regions of concern extend beyond those found to be most at risk. For example, in many parts of Latin America, food security is relatively stable at the moment—suggesting that a certain amount of ‘coping capacity’ could be available to deal with future climate stresses that affect agriculture production. Yet there is cause for concern because millions of people in the region are highly dependent on local agricultural production to meet their food needs and they are living in the very crosshairs of climate change.

The researchers found, for example, that by 2050, prime growing conditions are likely to drop below 120 days per season in intensively-farmed regions of northeast Brazil and Mexico.

Growing seasons of at least 120 days are considered critical not only for the maturation of maize and several other staple food crops, but also for vegetation crucial to feeding livestock.

In addition, parts of Latin America are likely to experience temperatures too hot for bean production, a major food staple in the region.

Mario Herrero, Polly Ericksen and Wiebke Foerch prepare to listen to Andy Jarvis' seminar on CCAFS

Mario Herrero, another ILRI author of the study, with climate Polly Ericksen and CCAFS staff member Wiebke Forech, all based at ILRI’s Nairobi headquarters, wait to hear a presentation from visiting CCAFS scientist Andy Jarvis at ILRI on 13 May 2011 (photo credit: ILRI/MacMillan).

The study also shows that some areas today have a ‘low sensitivity’ to the effects of climate change only because there is not a lot of land devoted to crop and livestock production. But agriculture intensification would render them more vulnerable, adding a wrinkle, for example, to the massive effort under way to rapidly expand crop cultivation in the so-called ‘bread-basket’ areas of sub-Saharan Africa.

Philip Thornton at Andy Jarvis' CCAFS Seminar

Philip Thornton (white shirt, facing camera), of ILRI and CCAFS, and other ILRI staff following a seminar on CCAFS given by Andy Jarvis at ILRI Nairobi on 13 May 2011 (photo credit: ILRI/MacMillan).

‘Evidence suggests that these specific regions in the tropics may be severely affected by 2050 in terms of their crop production and livestock capacity. The window of opportunity to develop innovative solutions that can effectively overcome these challenges is limited,’ said Philip Thornton, a CCAFS research theme leader and ILRI scientist and one of the paper’s co-authors. ‘Major adaptation efforts are needed now if we are to avoid serious food security and livelihood problems later.’
Five per cent reduction in crop season sensitivity to change capacity to cope: Corrected version

Areas where average maximum temperatures are expected to exceed 30⁰C by 2050, corrected version (map credit: ILRI-CCAFS/Notenbaert).

Read the whole report: Mapping hotspots of climate change and food insecurity in the global tropics, by Polly Ericksen, Philip Thornton, An Notenbaert, L Cramer, Peter Jones and Mario Herrero 2011. CCAFS Report no. 5 (final version). CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). Copenhagen, Denmark. Also available online at: www.ccafs.cgiar.org.

Click here for the CCAFS online media room with more materials, including corrected versions of the news release in English, Spanish, French and Chinese, and also versions of the two maps shown here in high resolution suitable for print media.

All the maps will be made available online later this year; for more information on the maps, please contact ILRI’s Polly Ericksen at p.ericksen [at] cgiar.org or CCAFS’ Vanessa Meadu at ccafs.comms [at] gmail.com.

Note: This study was led by scientists at the International Livestock Research Institute (ILRI) for the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). CCAFS is a strategic partnership of the CGIAR and the Earth System Science Partnership (ESSP). CCAFS brings together the world’s best researchers in agricultural science, development research, climate science and Earth System science, to identify and address the most important interactions, synergies and tradeoffs between climate change, agriculture and food security. The CGIAR’s Lead Centre for the program is the International Center for Tropical Agriculture (CIAT) in Cali, Colombia. For more information, visit www.ccafs.cgiar.org.

Pathways of the evolution of livestock production systems

Pathways of evolution to increase the sustainability of livestock production

Graphic showing pathways of livestock systems evolution to increase the sustainability of livestock production in selected systems, published in a paper by John McDermott et al, ‘Sustaining intensification of smallholder livestock systems in the tropics, Livestock Science (2010) (illustration credit: ILRI/McDermott).

John McDermott, who serves as deputy director general-research at the International Livestock Research Institute (ILRI), and some of his ILRI colleagues published a paper in Livestock Science that sets out what will be needed to make livestock production a sustainable system for smallholders in the developing world, enhancing both the livelihoods and environmental resources of the poor. The abstract of this ILRI paper follows.

‘Smallholder livestock keepers represent almost 20% of the world population and steward most of the agricultural land in the tropics. Observed and expected increases in future demand for livestock products in developing countries provide unique opportunities for improving livelihoods and linked to that, improving stewardship of the environment.

‘This cannot be a passive process and needs to be supported by enabling policies and pro-poor investments in institutional capacities and technologies. Sustaining intensification of smallholder livestock systems must take into account both social and environmental welfare and be targeted to sectors and areas of most probable positive social welfare returns and where natural resource conditions allow for intensification.

‘Smallholders are competitive in ruminant systems, particularly dairy, because of the availability of family labour and the ability of ruminants to exploit lower quality available roughage. Smallholders compete well in local markets which are important in agriculturally-based or transforming developing countries.

‘However, as production and marketing systems evolve, support to smallholders to provide efficient input services, links to output markets and risk mitigation measures will be important if they are to provide higher value products. Innovative public support and links to the private sector will be required for the poor to adapt and benefit as systems evolve. Likewise targeting is critical to choosing which systems with livestock can be intensified. Some intensive river basin systems have little scope for intensification. More extensive rain-fed systems, particularly in Africa, could intensify with enabling policies and appropriate investments. In more fragile environments, de-intensification is required to avoid irreversible damage to ecosystems.

‘Attention to both social and environmental sustainability are critical to understanding tradeoffs and incentives and to bridging important gaps in the perspectives on livestock production between rich and poor countries and peoples. Two specific examples in which important elements of sustainable intensification can be illustrated, smallholder dairy systems in East Africa and South Asia and small ruminant meat systems in Sub-Saharan Africa, are discussed.’

Read the whole paper, J.J. McDermott, S.J. Staal, H.A. Freeman, M. Herrero and J.A. Van de Steeg, Sustaining intensification of smallholder livestock systems in the tropics, published in Livestock Science, 2010: doi:10.1016/j.livsci.2010.02.014

New director general of global livestock research institute appointed: World Bank livestock advisor Jimmy Smith

Jimmy Smith

New director general designate of the International Livestock Research Institute (ILRI) Jimmy Smith (photo credit: ILRI/Paul Karaimu).

Jimmy Smith has been appointed the new director general designate of the International Livestock Research Institute (ILRI).

ILRI board chair Knut Hove made the announcement at the 35th meeting of the ILRI Board of Trustees, on 13 April 2011, to an afternoon gathering of ILRI staff, management and board.

In his announcement, Hove said, ‘We are facing challenges to make livestock more beneficial to the poor and less harmful to the environments of the poor. We think Jimmy Smith is a strong leader for ILRI, one who will open up new partnerships for pro-poor livestock research.’

Born in Guyana, in the Caribbean, where he was raised on a small mixed crop-and-livestock farm, Smith holds dual nationalities with Canada. He is a graduate of the University of Illinois, at Urban-Champaign, USA, where he completed hid PhD in animal sciences. Now based at the headquarters of the World Bank, in Washington, DC, he currently leads the Bank’s Global Livestock Portfolio.

Earlier in his career, Smith served for ten years at ILRI and its predecessor, the International Livestock Centre for Africa (ILCA) (1991–2001). At ILCA and then ILRI, Smith was the institute’s regional representative for West Africa, where he led development of integrated research promoting smallholder livelihoods through animal agriculture and built effective partnerships among stakeholders in the region. At ILRI, Smith spent three years leading the ILRI-led Systemwide Livestock Programme of the Consultative Group on International Agricultural Research (CGIAR), an association of 10 CGIAR centres working on issues at the crop-livestock interface. Since leaving his decade of work at ILCA/ILRI and the CGIAR, Smith has continued playing a major role in supporting international livestock for development in terms of both funding and strategizing.

Before joining the World Bank, where he has served for five years, Smith held senior positions at the Canadian International Development Agency (CIDA) (2001-2006) and the Caribbean Agricultural Research and Development Institute (CARDI) (1986–1991).

Smith will take over from Carlos Seré, ILRI’s current director general. The actual date of change-over will be announced in the near future and is expected to take place in the next 6 months.

Smith said, ‘I congratulate Carlos Seré, John McDermott [ILRI deputy director geneneral-research] and all ILRI staff for their work in making this institute such a strong player in livestock for development. Every member of staff has a contribution to make. My commitment is to take ILRI to even higher heights. I am excited about coming here and look forward to working with all of you. I hope I can demonstrate that I earn your trust and hard work.’

Seré commented, ‘I have known Jimmy for ten years and have learned to appreciate his many talents. He is familiar with important constituencies of livestock research and understands our partners well. We appreciate how strongly he has promoted the global livestock agenda in his work for CIDA and the World Bank and we believe he brings a number of important assets to the family. We will support him completely.’

ILRI Board Chair Hove said: ‘Jimmy Smith has an impeccable track record in developing extensive networks in the livestock sector globally and with development partners around the world. He is familiar with the CGIAR reform process and the international agricultural research agenda. We have full confidence that Jimmy Smith will build upon the strong ILRI foundation and provide the leadership and vision to propel ILRI to greater heights.’

Click on the slide presentation below to watch Smith’s presentation to the ILRI community.

Seeing the beast whole: When holistic approaches ‘come out of Powerpoints’ for better health

Purvi Mehta, Capacity Strengthening Officer

Head of capacity strengthening ILRI, Purvi Mehta-Bhatt delivered a lively presentation yesterday in New Delhi explaining how capacity building is an ‘impact pathway’ linking agriculture, nutrition and health for human well being (photo credit: ILRI).

Yesterday in New Delhi, Purvi Mehta-Bhatt, head of Capacity Strengthening at the International Livestock Research Institute (ILRI), was one of three speakers to make a presentation during a side session at the international conference ‘Leveraging Agriculture for Improving Nutrition and Health’ being put on this week by the International Food Policy Research Institute (IFPRI).

Saying it was ‘great to be home, in India’, Mehta-Bhatt, who is an Indian national based at ILRI’s Nairobi headquarters, started her 12-minute talk by getting down to basics—the basics of an elephant, that is. She told a ‘small story’ of an elephant that landed in a land where nobody had seen an elephant before. Everyone looked at this new beast in different ways, each seeing only a part of the animal. Even though all were looking at the same object, each interpreted the beast very differently, according to the small part they could see of it and according to their own interpretations. ‘This is pretty much the story of the three sectors we are talking about—agriculture, nutrition and health,’ said Mehta-Bhatt.  ‘We are all in our own silos’, she said, and need to see the beast whole.

Mehta-Bhatt sees capacity strengthening work as an important ‘impact pathway in linking these three sectors together’.

‘A piecemeal approach won’t work,’ she warned.  And although ‘this is nothing new’, she said, we still have limited capacity and understanding in this area, and only a few concrete case studies to show where linking different stakeholders in a health outcome has worked. As someone recently complained to her, it’s all very well talking about bringing all stakeholders together, but when has that ever ‘come out of Powerpoints’?

‘Capacity development is not just about training programs,’ says Mehta-Bhatt; ‘it goes beyond individual capacity building; it brings in systemic cognizance and impinges on institutional architecture, and all this happens in a process of co-learning, where messages are taken both from lab to land and from land to lab.’

Among ongoing ILRI initiatives that make use of multi-national, multi-disciplinary and multi-sectoral capacity building approaches are an ILRI-implemented Participatory Epidemiology Network for Animal and Public Health (PENAPH) with seven partners; a NEPAD-sponsored Biosciences eastern and central Africa Hub facility managed by ILRI in Nairobi and hosting many students from the region; a Stone Mountain Global Capacity Development Group of 11 members that is mapping existing capacities in the field of ‘one-health’ and co-led by the University of Minnesota and ILRI; and an EcoZD project coordinated by ILRI that is taking ecosystem approaches to the better management of zoonotic emerging infectious diseases in six countries of Southeast Asia and helping to set up two regional knowledge resource centres at universities in Indonesia and Thailand.

All of these projects, she explained, have capacity strengthening as a centrepiece; all are working with, and building on, what is already existing at the local and regional levels; and all are being conducted in a process of co-learning.

Mehta-Bhatt finished by finishing her elephant story. Capacity development, and collective action for capacity development, she said, can link the three sectors—agriculture, nutrition and health—allowing them not only ‘to recognize the elephant as a whole but to ride it as well.’

Watch the presentation by Purvi Mehta-Bhatt here:

Genebanks needed to save farm animal diversity of the South—and assure the world’s future food supply

Carlos Sere amongst farm animals

Opinion piece in SciDev.net by Carlos Seré, Director General ILRI

Today, scientists are reconstructing the genomes of ancient mastodons, found in the frozen north. Dreams of resurrecting lost species rumble in the collective imagination. At the same time, thousands of still-existing farm animal breeds—nurtured into being by generations of farmers attuned to their environments—are slipping into the abyss of extinction, below the wire of awareness.

Livestock genetic diversity is highly threatened worldwide, but especially in the South, where the vast majority of remaining diversity resides. This diversity—of cattle, goats and sheep, swine and poultry—is as essential to the future world food supply as is the crop diversity now being stored in thousands of collections around the world and in a fail-safe crop genebank buried in the Arctic permafrost. But no comparable effort exists to conserve the animals or the genes of thousands of breeds of livestock, many of which are rapidly dying out.

Hardy and graceful Ankole cattle, raised across much of East and Central Africa, are being replaced by black-and-white Holstein-Friesian dairy cows and could disappear within the next 50 years. In Viet Nam, the percentage of indigenous sows declined from 72 per cent of the total population in 1994 to only 26 per cent just eight years later. In some countries, national chicken populations have changed practically overnight from genetic mixtures of backyard fowl to selected uniform stocks raised under intensive conditions.

Some 20 per cent of the world’s 7,616 breeds of domestic livestock are at risk, according to the Food and Agriculture Organization of the United Nations. And change is accelerating. Holstein-Friesian dairy cows are now raised in 128 countries in all regions of the world, and an astonishing 90 per cent of all cattle in the North are of just six tightly defined breeds.

Most endangered livestock breeds are in developing countries, where they are herded by pastoralists or tended by farmers who grow both crops and livestock on small plots of land. With survival a day-to-day issue for many of these small-scale farmers, they are unlikely to make conservation of their rare breeds a priority, at least not without significant assistance. From Africa to Asia, farmers of the South, like the farmers of Europe, Oceania and the Americas before them, are increasingly choosing the breeds that will produce more milk, meat and eggs to feed their hungry families and raise their incomes.

They should be supported in doing so. At the same time, the breeds that are being left behind not only have intrinsic value, but also may possess genetic attributes critical to addressing future food security challenges, in developed or developing countries, as the climate, pests and diseases all change. Policy support for their conservation is needed now. This support could be in the form of incentives that encourage farmers to keep traditional animals. For example, policies could support breeding programs that increase the productivity of local breeds, or they could facilitate farmers’ access to niche markets for traditional livestock products. And policymakers should take the value of indigenous breeds into account when designing restocking programs following droughts, disease epidemics, civil conflicts or other disasters that deplete animal herds.

But even such assistance will not enable developing-world farmers to stem all the losses of developing-world farm animals. A parallel, even bigger, effort, linking local, national and international resources, must be launched to conserve livestock genetic diversity by putting some of it ‘in the bank’. The cells, semen and DNA of endangered livestock should be conserved—frozen—and kept alive. The technology is available and has been used for years to aid both human and animal reproduction. It should also be used to conserve the legacy of 10,000 years of animal husbandry. Furthermore, such collections must be accompanied by comprehensive descriptions of the animals and the populations from which they were obtained and the environments under which they were raised.

We should know the type of milking goat that is able to bounce back quickly from a drought. We should know the breeds of cow that resist infection with the animal form of sleeping sickness. We should know the native chickens that can survive avian flu.

We should do all we can to assist farmers and herders in the conservation of these endangered animals—especially now, in the midst of rapid agricultural development. And if some of these treasured breeds fail to survive the coming decades of change, we should at least have faithfully stored and recorded their presence, and have preserved their genes. It is these genes that will help us keep all our options open as we look for ways to feed humanity and to cope with coming, yet unforeseen, crises.

Climate and health experts warn that scientists must work together, or risk ‘disastrous consequences’ to human and animal health in Africa

Consensus: Spread of Malaria, Rift Valley fever, and Avian flu far more likely if researchers continue to ‘operate in silos’ and if solutions ignore local conditions.

human and animal health in Africa  

Faced with the prospect of more variable and changing climates increasing Africa’s already intolerable disease burden, scientists must begin to reach out to colleagues in other fields and to the people they want to help if they hope to avert an expected “continental disaster,” according to leading climate, health, and information technology experts, who met in Nairobi last week.

Climate change will further increase the already high variability of Africa’s climate, fostering the emergence, resurgence and spread of infectious diseases. “A warmer world will generally be a sicker world,” said Prof. Onesmo ole-MoiYoi, a Tanzania medical, veterinary and vector expert. “We scientists need to adopt a new way of working, one that makes African communities bearing the burden of disease part of the solution rather than part of the problem.” The separate fields of human health, animal health, climate, vectors and environment must come together to avert a “continental disaster,” according to leading experts who attended the meeting.

Patti Kristjanson of ILRI, which hosted the meeting, agreed. “We need to do things differently than we have in the past. The impact of disease will increase if we continue to operate in silos. Our only chance at reducing the impact of deadly diseases in Africa is to increase collaboration across the disciplines of environment and health, and in a way that involves local communities. Failure to do so could lead to disastrous consequences.”

The experts concluded a three-day meeting sponsored by Google.org and organized by researchers from the IGAD Climate Predictions and Applications Centre (ICPAC), the Kenya Medical Research Institute (KEMRI), the International Centre of Insect Physiology and Ecology (icipe), the International Livestock Research Institute (ILRI) and Google.org.

The meeting was one of the first on the continent to link climate and health researchers to reduce Africa’s infectious disease burden. The experts cited malaria, Rift Valley fever and bird flu as diseases poised to spread to new areas, along with an increasing threat of diseases such as Chikungunya and the emergence of as yet unknown disease pathogens, unless researchers, disease control workers and local communities share information and communicate faster and more strategically across their professions.

Prof. ole-MoiYoi of icipe and Kenyatta University stressed the importance of tapping the expertise of local communities. “By using bed-nets and anti-malarial drugs, and by removing the human-made breeding sites of mosquitoes, communities in the Kenyan Highlands have managed to stop recurrent malaria epidemics.”

“To combat disease, we need a holistic approach that involves local communities,” ole-MoiYoi said. “We can control malaria across Africa if we can divorce ourselves from the linear thinking that looks for ‘a’ solution and adopt an integrated approach.”

The World Health Organisation (WHO)estimates that changes to the earth’s climate are already causing five million more severe illness and more than 150,000 more deaths each year. By 2030, the number of climate-related diseases is likely to more than double.

Dr. Rosemary Sang, a researcher from KEMRI, described a case study of an outbreak of Rift Valley fever that claimed the lives of 155 Kenyans in late 2006 and early 2007. The virus is transmitted from livestock to people either through handling of infected animal material or by the mosquito vectors. Sang said the outbreak, which peaked 24 December, highlights most of the critical challenges researchers and health officials face in connecting data and advanced warnings to realities on the ground.

Kenya’s Garissa District, in the remote north-eastern corner of the country, experienced heavy rains and flooding starting in mid-October 2006, resulting in standing pools of water that became breeding sites for the mosquitoes that transmit Rift Valley fever. The first veterinary interventions did not take place until mid-January 2007, almost three months after the onset of the heavy rains, 2.5 months after mosquito swarms were reported, 2 months after the first livestock and 1.5 months after the first human cases were recorded, respectively.

"We need to move up our response times to these outbreaks,” said Sang. “All of the warning signs of an outbreak were there but we weren’t able to connect the dots.”

She cites poor tele-communication and roads in the region as major challenges. “Many of these areas lie outside mobile phone networks and far from health or veterinary clinics. As animals and then people began to get sick and die, the word didn’t get out fast enough.”

In the end, however, human and animal health officials, working together, were able to save the lives of more people in the 2006/07 outbreak than in the same region in 1998, when more than 600 people died from Rift Valley fever and millions of dollars were lost in livestock trade and tourism.

“The key is predicting outbreaks before they happen and preparing high-risk areas to act quickly to reduce the impact on communities,” said Sang.
Frank Rijsberman of Google.org called on technical experts to strengthen their capacity to predict and prevent infectious diseases. That will take more and better climate, vector, human and animal data, as well as more data sharing.

“The links between the climate and health research communities across Africa need to be strengthened,” Rijsberman said. “By sharing information we can stop some disease outbreaks and dramatically shorten our response time to others – which can not only save lives but also protect communities against subsequent severe economic losses.”

Mapping the way forward
The researchers pointed to climate models and new mapping software such as Google Earth and Health Map as useful tools for integrating vast amounts of environmental, health, and poverty data. “We’re working to identify the populations of people that are most vulnerable to disease and other external shocks,” said Phil Thornton of ILRI. “That includes communities that are at high risk for malaria because, for example, they are located both far from health clinics and near to water sources. We make these ‘vulnerability maps’ publicly available so that these high-risk communities can get the support they need to respond quickly and effectively to disease outbreaks.”

Google.org environmental scientist Amy Luers said better disease responses will also require tackling diseases at their root causes. “We scientists have to do a better job of informing the public of the underlying drivers of the spread of infectious diseases. The impacts of increasing populations and environmental degradation will require institutional and governance changes put in place for a ‘one health’ approach to human, animal and environmental well being.”

“We need to prepare now to avoid future catastrophe,” says Prof. ole-MoiYoi. “We are discovering that climate variability is playing a bigger and bigger role in the spread and severity of diseases across the globe. Our survival, and that of our environment, may depend on our joining hands to understand that environment. And our roles in it.”

The time is now: Safeguarding livestock diversity

ILRI’s Annual Report: ‘The Time is Now: Safeguarding livestock diversity’ has just been released. The report on 2006 work focuses on how research is helping to characterize, use and conserve the world’s rapidly diminishing livestock genetic diversity.

The mission of the International Livestock Research Institute (ILRI) is to help people in developing countries move out of poverty. The challenge is to do so while conserving the natural resources on which the poor directly depend. Among the natural resources important to the world’s poor are the ‘living assets’ people accumulate in the form of their farm animals.

ILRI works with the UN Food and Agriculture Organization (FAO) and many other partners to improve management of livestock genetic resources in developing countries. This year, FAO produced the world’s first inventory on animal genetic resources ‘The State of the World’s Animal Genetic Resources’, highlighting that many breeds of livestock are at risk of extinction, with the loss of an average of one livestock breed every month. The FAO report estimates that 70% of the entire world’s remaining unique livestock breeds are found in developing countries.

ILRI’s Director General Carlos Seré says: ‘Although our information on the world’s remaining livestock genetic resources is imperfect, experts agree that we need to take action now rather than wait for substantially better information to become available.

‘The accelerating threats to livestock diversity in recent years demand that we act now before a substantial proportion of those resources are lost to us forever. The time is now’, says Seré.

At a recent keynote address, the UN Under-Secretary General and Executive Director of the United Nations Environment Program (UNEP), Achim Steiner, echoed these concerns and highlighted the implications of loss of the world’s animal genetic diversity:

‘I, like so many others, was shocked to read of the decline of genetic diversity in livestock outlined by ILRI and FAO in September (2007) at the First International Technical Conference on Animal Genetic Resources.

‘The increasing over-reliance on a handful of breeds such as Holstein-Friesian cows, White Leghorn chickens and fast-growing Large White pigs mirrors the trend in agricultural crops.

‘Mono-cultures, whether it be in agriculture or in the narrowing of human ingenuity and ideas, will not serve humanity well in a world of over six billion shortly moving to perhaps 10 billion.

‘(Mono-cultures) will not enhance stability and adaptation in a climatically challenged world’, concluded Steiner.

Download ILRI’s 2006 Annual Report: ‘The Time is Now: Safeguarding Livestock Diversity’: http://mahider.ilri.org/bitstream/10568/2479/1/AnnualRep2006_Safeguard.pdf

Related articles and resources on animal genetic resources

A ‘Livestock Meltdown’ Is Occurring As Hardy African, Asian, and Latin American Farm Animals Face Extinction: http://www.ilri.org/ilrinews/index.php/archives/550

FAQs about saving livestock genetic resources: http://www.ilri.org/ilrinews/index.php/archives/552

Films on animal genetic resources

• 3-minute film on conserving livestock for people

Livestock breeds that have helped people survive countless challenges throughout history are now dying out at an extraordinary rate. Globally, governments are discussing this problem, meanwhile this film sets out 4 approaches that can help now.

http://blip.tv/ilri/conserving-livestock-genetic-resources-for-people-summary-1369699

• 30-second film highlight on Sheko cattle

Sheko cattle come from Southern Ethiopia and there are only 2500 left in the world. They are adapted to withstand trypanosomosis, a disease that kills cattle and people.

http://blip.tv/ilri/three-endangered-african-livestock-breeds-1370212

• 30-second film highlight on Ankole cattle

Ankole cattle come from East Africa. These hardy, gentle, animals are threatened by expanding human populations and market demands. At current rates they will disappear in 50 years.

http://blip.tv/ilri/ankole-cattle-one-of-africa-s-disappearing-livestock-breeds-3982895

• 30-second film highlight on Red Maasai sheep

Red Maasai sheep come from East Africa and do not get sick when infected by intestinal worms. However, the numbers of pure Red Maasai sheep are declining.

http://blip.tv/ilri/three-endangered-african-livestock-breeds-1370212

The time is now

The world’s first Global Plan of Action for Animal Genetic Resources was agreed at a recent FAO conference in Switzerland from 3 to 7 September. While international negotiations continue, much can be done now, before it’s too late.
 

The First International Technical Conference on Animal Genetic Resources for Food and Agriculture, held in Interlaken in September, was a week-long series of negotiations organized by the Food and Agriculture Organization of the United Nations (FAO) and hosted by the Government of Switzerland to consider the current state of the world’s animal genetic resources and to reach international agreement on the best ways forward to protect these resources for long-term use. The conference opened with the launch of the world’s first report on the status of farm animal genetic resources, The State of the World’s Animal Genetic Resources. By the end of the conference, the world’s first Global Plan of Action for Animal Genetic Resources had been agreed by representatives from 109 countries. The global plan identifies four high-priority areas for animal genetic resources: characterization, inventory and monitoring of trends and risks, sustainable use and development, conservation and policies, institutions and capacity building.
Progress made at the Interlaken Conference includes:

  • Agreement on a global plan for identifying and conserving valuable livestock species
  • Agreement that livestock keepers rights are fundamental and need to be considered as part of an inclusive and equitable global plan
  • Agreement that incentives need to be provided to help the traditional custodians of indigenous animal genetic resources—usually small-scale livestock keepers—continue to keep their native breeds.

Overview of the Interlaken conference
On the first day of the conference, ILRI’s director general, Carlos Seré, presented a paper on ‘Dynamics of Livestock Production Systems, Drivers of Change and Prospects for Animal Genetic Resources’. He identified key drivers of change, how they were influencing current trends and future prospects, and their impacts on the management of animal genetic resources for food and agriculture.
Seré identified four drivers: economic development and globalization, changing market demands, environmental impacts and trends in science and technology. He described the trends in livestock production in industrial, crop-livestock and pastoral systems, emphasizing that while the trends are occurring in both developing and industrialized countries, the outcomes are different. In the developing world, some trends are reducing the ability of livestock keepers to improve their livelihoods, reduce their poverty and manage their natural resources. The industrial livestock production systems of developed countries have already greatly narrowed the livestock genepool, reducing our ability to deal with future uncertainties, such as climate change and zoonotic diseases.

Local breeds being crowded out
During the presentation, the ILRI director general cited replacement of indigenous tropical breeds with exotic animals as a key reason for the erosion of genetic diversity. Local breeds are estimated to be disappearing at the rate of one a month. This concern was echoed by the representative from the League for Pastoral Peoples and Endogenous Livestock Development. Ilse Köhler-Rollefson stated that policies relating to the introduction of exotic breeds and subsidies were helping large-scale production systems but hurting pastoralists.
Seré stressed that conserving our livestock genetic resources required appropriate institutional and policy frameworks and concerted international efforts. As these negotiations will take time, Seré proposed four complementary actions to improve the management of animal genetic resources and maintain our genetic options for the future. These are: provide incentives for in situ conservation of local breeds (‘keep it on the hoof’); facilitate movement of breeds within and between countries (‘move it or lose it’); match breeds to environments (‘livestock landscape genomics’); and establish genebanks (‘put some in the bank’).
These four strategies are practical steps that can help conserve indigenous tropical breeds. Seré cautioned that if actions are not taken now, it could be too late for some breeds that will soon be lost to the world forever.

Media help to raise awareness of ‘livestock meltdown’
There was extensive media coverage of the FAO Interlaken conference, with regional and international press and radio and local African TV all helping to raise awareness of the ‘livestock meltdown’ taking place.

Local livestock breeds at risk: Nature (3 September 2007) reported that indigenous animals are dying out as commercial breeds sweep the world.

‘Many of the world’s indigenous livestock breeds are in danger of dying out as commercial breeds take over, according to a worldwide inventory of animal diversity.
‘Their extinction would mean the loss of genetic resources that help animals overcome disease and drought, particularly in the developing world, say livestock experts.’

Read the full article at http://www.nature.com/news/2007/070903/full/070903-2.html (subscription required).

FAQs about saving livestock genetic resources

01.   What did ILRI/FAO find and how did you find it?
How: A global assessment of livestock genetic resources has been coordinated by the Food and Agriculture Organization of the United Nations (FAO). The assessment aimed to determine the status of the world’s livestock resources – what exists and where, what are their characteristics and the risks they may be facing, and what is the capacity of nations to deal with these. As an international organization addressing poverty through sustainable livestock production, the International Livestock Research Institute (ILRI) develops research tools for characterizing livestock breeds of the developing world and assessing their diversity.

What?: The ‘assessment of the State of the World’s livestock resources’ (as this initiative was called) had the following findings:

  • Over 7000 breeds (representing mammalian and avian species) have been developed over the last 12,000 years, since the first livestock species was domesticated.
  • There are 40 livestock species used for food and agriculture, 5 of which – cattle, sheep, goats, pigs and chickens – account for most of the world’s food and agriculture production.
  • Some 696 breeds have become extinct since the early 1900s.
  • A total of 1,487 breeds are at risk, of which 579 are at critical levels (requiring immediate action).
  • Key causes of threat were identified (see examples below).
  • Lack of information on the world’s livestock resources—what livestock breeds and populations exist and  where, what are their characteristics, do they possess unique genetic diversity—was found to be a key impediment to their sustainable use.
  • Conservation programs are lacking, especially in developing countries where most of the world’s remaining breeds reside and where the risk of loss of livestock genetic resources is greatest

02.   Why do a few specialized ‘European’ breeds of farm animals dominate?

  • In pursuit of quick wins to increase productivity to meet demand, developing countries over the last half century have imported specialized, high-producing breeds, such as the black-and-white Holstein-Friesian dairy cow.
  • Aggressive promotion by breeding companies of the North.
  • Subsidized importation, usually through development assistance.
  • Exotic breeds have been imported into developing countries without adequate information on the robustness/hardiness/appropriateness of the native breeds the imports have been supplanting.

03.   How are the exotic imports faring in their various new locales in developing countries?
There are local niches where exotic breeds have proved productive. For example, Holstein-Friesian cows have done well in the East African highlands, which have temperate climate and adequate feed resources. However, the imports have been unable to cope with the disease, heat, humidity, scarce and poor-quality feed in many developing-country environments. Their inappropriateness for these stressful environments has tended to be discovered only after they have been widely used and have significantly ‘diluted’ the local gene pool, leaving local farmers without their traditional hardy animals.

04.   Why can’t we save all domesticated livestock breeds and populations?
Saving all existing livestock breeds around the world would require considerable investment. Fortunately, some specialized breeds in developed countries are currently safe or relatively safe because they remain popular with local communities and thus are supported by market forces. With globalization and ease of movement of traded commodities, there is increasing risk that fewer and fewer breeds will be supported this way. Many local traditional breeds support the livelihoods of the world’s poor livestock keepers in developing countries. While these native breeds are threatened by rapid changes occurring in the livestock production systems of poor countries, these countries lack the resources to conserve all their traditional native stock.

05.   Why is genetic diversity important in livestock?
Diversity is the basic ingredient for improving productivity, product quality and adaptation to meet different needs. It offers farmers and breeders the options needed to make adjustments to new market needs or to respond to changes in the production environment. A disease outbreak that wipes out a particular (susceptible) genetic type presents a greater risk in ‘monoculture’ (single-breed) production systems than it does in multi-breed systems. In other words, livestock diversity can help people cope with adversity while also providing prospects for livestock improvements. Changes in livestock production across the developing world, as well as an unpredictable future, require that these genetic options be safeguarded. It is particularly important to conserve livestock genetic resources because the ancestors of most of our existing livestock species no longer exist; crop breeding, on the other hand, has benefited enormously by being able to harness genes from the wild ancestors of our major crop plants.

06.   Can’t we just recreate desired traits via genetic engineering if necessary?
This will probably be technically feasible in the future for many production traits of interest in our livestock. And that is exactly why we need to have the diversity from which ‘new animal types’ could be created – whether through genetic engineering or conventional breeding (acceptability and costs, among others, will determine which ‘creation avenue’ is employed). Importantly, we do not know which traits we will need in future and which of the present breeds posses the requisite genes. Thus, as we develop technology and tools to conserve livestock genetic resources, we must also ensure that we have access to the raw materials—the livestock and/or their germplasm.

07.   Doesn’t industrialized agriculture obviate the need for such diversity?
As has happened in crop agriculture, industrialized livestock systems are typically characterized by a handful of specialized ‘breed types’. The chicken and pig industries have a few parental lines that form the basis of commercial chickens and pigs around the world. An outbreak of a disease to which these lines are susceptible could wipe out most of these animals, with disastrous global impacts. Thus, it is in the interests of both the public and private sectors to safeguard diversity in livestock as source of future options.

08.   How is foreign investment reshaping local livestock practices?

  • Direct foreign investment finances breeding companies that introduce foreign breeds.
  • The ‘supermarket revolution’, which is driven in many countries by foreign direct investment, is impacting livestock as well as crop agriculture in significant ways:

    o Standards required for food products sold in supermarkets influence such things as product quality, size  uniformity and timing of delivery.
    o The production volume needed to meet these food standards make it difficult for poor smallholders to participate in the supermarket revolution.
    o Contract-farming provides avenues for a few, well-informed and/or better-endowed farmers to participate in this revolution, sometimes through cooperatives.
   o But most smallholders are left out in this process.

09.   Do developed-world genebanks already hold some of this diversity material?
Developed-world genebanks hold very little livestock germplasm from developing countries—just a few breeds they may have imported for experimental evaluation. The major global flow of livestock genetic material has been from North to South. Currently, the fastest and most effective way for the North to help stem livestock biodiversity losses is to assist developing nations in establishing capacity to save their endangered native breeds. It is not good enough for Southern countries to depend on the North to be custodians of their livestock genetic material. The greatest livestock diversity remaining in the world is in the South and Northern countries are not highly interested in these breeds.

10.   Are rare breeds going to end up being preserved by hobbyists or organic enthusiasts?

In the developed world, there are examples of livestock breeds being preserved by livestock hobbyists or enthusiasts. In the developing world, most livestock owners are poor and the number of breeds needing attention is too large to be addressed by a few rich farmers. Alternative and substantive actions are required.

11.   How important is livestock production to developing world development?

Worldwide, one billion people are involved in animal farming and domestic animals supply 30 per cent of total human requirements for food and agriculture. In developing countries, 70 per cent of the rural poor depend on livestock as an important part of their livelihoods and livestock account for some 30 per cent of agricultural gross domestic product, a figure expected to rise to 40 per cent by the year 2030. Currently, more than 600 million rural poor people rely on livestock for their livelihoods. (Sixty-three per cent of the developing world’s total population live in rural areas, including 75 per cent of the 1.2 billion people trapped in extreme poverty; of these 900 million rural poor, some 70 per cent, or 630 million, raise livestock as part of their livelihoods.) The developing-world’s large and rapidly growing livestock markets make livestock production an income-generating opportunity similar to horticulture and other high-value agricultural commodities. The advantage of the livestock markets is that they are largely domestic and thus require no export infrastructure. Finally, livestock is what poor farmers know how to produce, and they have access to feed and other resources to produce it competitively.

12.   Does livestock production still offer a pathway out of poverty?
Yes. The growing livestock markets and expanding post-production value addition are providing jobs and incomes at many levels. Increasing animal production also of course keeps down critical food prices for the urban poor.

13.   Is another answer to simply scale back the use of livestock in general by reducing demand in the developed world while stopping demand before it starts in developing countries?
The livestock revolution is demand-driven. As consumers become more urbanized and their incomes grow, as they have in much of Asia and Latin America, their demand for animal products grows markedly. We expect that the developing world will double their consumption of animal products in the next 20 years. Livestock production growth to meet the growing market demand has to rely on the same or shrinking land, water and other natural resources. What we need are dramatic productivity increases. Policies will play a key role in shaping what happens in different parts of the world. If polices enforce more environmentally neutral production systems, this could lead to higher prices, particularly in the developed countries, which use intensive systems heavily reliant on external inputs and energy.

14.    How will the ‘supermarket revolution’ take hold in the developing world and what impact this will have on livestock production?
Supermarkets will impose stringent requirements on production of crops and livestock foods, particularly in terms of homogeneous large volumes and food safety conditions. This can make it increasingly difficult for smallholders to participate in these modern commodity chains. Important developments in terms of organizing smallholders for collective action are critical and are being established by agribusinesses and non-governmental organizations (e.g. contract-farming, vertical integration, cooperatives). Large-scale production units will continue to grow and can be developed in pro-poor ways by maximizing employment in poor areas that have resources suitable for animal production. For example, large-scale dairy or feedlot operations may contract forage production to small-scale farmers.

15.   Is the goal of saving diversity simply to boost the potential of alternatives to industrial animal husbandry, such as crop-livestock systems?
No, it is to provide options for the world. Even industrial systems will need animal genetic resources if significant shocks to the system happen, e.g. ban on antibiotics, climate change causing higher temperatures in certain regions and the spread of diseases from the tropics to the temperate world.

16.   Why is it important to boost crop-livestock systems?
Boosting crop-livestock production is the best way to sustain agricultural systems in large parts of the developing world. There are big inefficiencies in these systems that can be addressed with technology, better training and knowledge sharing.

17.   How far along with ‘landscape-livestock genomics’ are you? Is there even the beginnings of a map? When do you expect such a thing might be available?
The aim of landscape genomics is to learn from the co-evolution of livestock and their production systems and use the knowledge gained to better match different breeds with production circumstances. The approach employs molecular genetic tools to understand the genetic composition of livestock at the population level, using specified genetic regions (‘signatures of selection’) that appear targeted by key influencing factors in that environment. By overlaying this information with other sets of information such as agro-ecological maps, one can see what genetic material are candidates for use in which parts of the globe.
Where are we today? Independent of the genomics work, much progress is being made in modelling and mapping livestock systems, including how they are evolving in response to climate change. Development of tools for rapidly mapping genetic composition of populations is also advancing. Over the next 5 years, we plan to have made significant advances in this area and to have applied landscape genomics (even at a pilot scale) in the humid zone of West Africa, focusing on cattle populations.

18.  What do you hope to do next?
Urgent actions include:

  • With FAO and other collaborators, sensitize the global community about the value of conserving livestock genetic resources and mobilize greater support for saving the remaining livestock diversity in the developing world.
  • Focus on breeds already at risk, especially those in the FAO ‘critical list’.
  • Establish gene banks: Ex situ conservation (in gene banks) is seen as the fastest way to save some of these breeds, even if characterization information is inadequate or absent – a special session at the global conference in Interlaken (Switzerland) on 3 September 2007 discussed strategies to move this forward.
  • Facilitate the sharing of genetic material among developing countries, especially where there is evidence that a breed in one country holds promise for another, which will serve as long-term insurance against losses arising from droughts, civil conflicts, and other disasters.
  • Develop re-stocking strategies to ensure that appropriate breeds are used in the aftermath of disasters.
  • Develop pro-poor breeding strategies appropriate for low-input livestock production systems and infrastructure levels available in developing countries.
  • Identify factors that constrain competitiveness of indigenous breeds.

A ‘livestock meltdown’ is occurring as hardy African, Asian and Latin American farm animals face extinction

Scientists Call for Rapid Establishment of Livestock Genebanks To Conserve Indigenous Breeds
 

With the world’s first global inventory of farm animals showing many breeds of African, Asian, and Latin American livestock at risk of extinction, scientists from the Consultative Group on International Agricultural Research (CGIAR) today called for the rapid establishment of genebanks to conserve the sperm and ovaries of key animals critical for the global population’s future survival.

An over-reliance on just a few breeds of a handful of farm animal species, such as high-milk-yielding Holstein-Friesian cows, egg-laying White Leghorn chickens, and fast-growing Large White pigs, is causing the loss of an average of one livestock breed every month according to a recently released report by the UN Food and Agriculture Organization (FAO). The black-and-white Holstein-Friesian dairy cow, for example, is now found in 128 countries and in all regions of the world. An astonishing 90 percent of cattle in industrialized countries come from only six very tightly defined breeds.

The report, “The State of the World’s Animal Genetic Resources,” compiled by FAO, with contributions by the International Livestock Research Institute (ILRI) and other research groups, surveyed farm animals in 169 countries. Nearly 70 percent of the entire world’s remaining unique livestock breeds are found in developing countries, according to the report, which was presented to over 300 policy makers, scientists, breeders, and livestock keepers at the First International Technical Conference on Animal Genetic Resources, held in Interlaken, Switzerland, from 3-7 September 2007.

“Valuable breeds are disappearing at an alarming rate,” said Carlos Seré, Director General of ILRI. “In many cases we will not even know the true value of an existing breed until it’s already gone. This is why we need to act now to conserve what’s left by putting them in genebanks.”

In a keynote speech at the scientific forum on the opening day of the Interlaken conference, Seré called for the rapid establishment of genebanks in Africa as one of four practical steps to better characterize, use, and conserve the genetic basis of farm animals for the livestock production systems around the world.

“This is a major step in the right direction,” said Seré. “The international community is beginning to appreciate the seriousness of this loss of livestock genetic diversity. FAO is leading inter-governmental processes to better manage these resources. These negotiations will take time to bear fruit. Meanwhile, some activities can be started now to help save breeds that are most at risk.”

ILRI, whose mission is poverty reduction through livestock research for development, helps countries and regions save their specially adapted breeds for future food security, environmental sustainability, and human development.

Industrialized countries built their economies significantly through livestock production and there is no indication that developing countries will be any different. Worldwide today, one billion people are involved in animal farming and 70 percent of the rural poor depend on livestock as an important part of their livelihoods. “For the foreseeable future,” says Seré, “farm animals will continue to create means for hundreds of millions of people to escape absolute poverty.”

In recent years, many of the world’s smallholder farmers abandoned their traditional animals in favor of higher yielding stock imported from Europe and the US. For example, in northern Vietnam, local breeds comprised 72 percent of the sow population in 1994, and within eight years, this had dropped to just 26 percent. Of the country’s fourteen local pig breeds, five are now vulnerable, two are in critical state, and three are facing extinction.

Scientists predict that Uganda’s indigenous Ankole cattle—famous for their graceful and gigantic horns—could face extinction within 50 years because they are being rapidly supplanted by Holstein-Friesians, which produce much more milk. During a recent drought, some farmers that had kept their hardy Ankole were able to walk them long distances to water sources while those who had traded the Ankole for imported breeds lost their entire herds.

Seré notes that exotic animal breeds offer short-term benefits to their owners because they promise high volumes of meat, milk, or eggs, but he warned that they also pose a high risk because many of these breeds cannot cope with unpredictable fluctuations in the environment or disease outbreaks when introduced into more demanding environments in the developing world.

Cryo-banking Sperm and Eggs
Scientists and conservationists alike agree that we can’t save all livestock populations. But ILRI has helped lay the groundwork for prioritizing livestock conservation efforts in developing regions. Over the past six years, it has built a detailed database, called the Domestic Animal Genetic Resources Information System (DAGRIS), containing research-based information on the distribution, characteristics, and status of 669 breeds of cattle, sheep, goats, pigs and chickens indigenous to Africa and Asia.

Seré proposes acceleration of four practical steps to better manage farm animal genetic resources.

1.) A first strategy is to encourage farmers to keep genetic diversity “on the hoof,” which means maintaining a variety of indigenous breeds on farms. In his speech, Seré called for the use of market-incentives and good public policy that make it in the farmer’s self-interest to maintain diversity.
2.) Another way to encourage “keeping it on the hoof,” Seré said, is by allowing greater mobility of livestock breeds across national borders. When it comes to livestock, farmers have to “move it or lose it,” he said. Wider distribution of breeds and access to them makes it less likely that particular breeds and populations will be wiped out by fluctuations in the market, civil strife, natural disasters, or disease outbreaks.
3.) The third approach that Seré is championing is a longer term one with great future potential for resource-poor farmers. It goes by the name of “landscape genomics” and it combines advanced genomic and geographical mapping techniques to predict which breeds are best suited to which environments and circumstances around the world.
4.) But for landscape genomics—or any of the other approaches—to work, of course, scientists will need a wide variety of livestock genetic diversity to work with. For this reason, the fourth approach Seré is advocating is long-term insurance to “put some in the bank,” by establishing genebanks to store semen, eggs, and embryos of farm animals. 

“In the US, Europe, China, India, and South America, there are well-established genebanks actively preserving regional livestock diversity,” said Seré. “Sadly, Africa has been left wanting and that absence is sorely felt right now because this is one of the regions with the richest remaining diversity and is likely to be a hotspot of breed losses in this century.”

But setting up genebanks is a first important step towards a long-term insurance policy for livestock. Seré noted that genebanks by themselves are not the only answer to conservation, particularly if they end up becoming “stamp collections” that are never used.

“Individual countries are already conserving their unique animal genetic resources. The international community needs to step forward in support,” said Seré. “We support FAO’s call to action and the CGIAR stands ready to assist the international community in putting these words into action.” 

Related information: 

 What Makes Livestock Conservation So Different from Plant Conservation?

 

 

North-to-South Livestock Gene Flows Crowd out Local Breeds

 

 

Livestock breeds face ‘meltdown’ (BBC News)

 

Visit the online press room for further information and a series of short films and high-quality images of the third world’s unique farm animal breeds.

Protecting breeds for people

Animal Genetic Resources Are a Key Tool for Coping with Change in the Livestock Sector
 

Livestock are ubiquitous in the developing world. The ‘big five’—cattle, sheep, goats, poultry and pigs—as well as 9 other popular farm animals and 26 or so more specialized species are raised by more than half a billion people either on pastoral rangelands by nomadic herders, or on mixed farms by smallholders who raise crops along with livestock, or in peri-urban areas by people who raise a few animals in their backyards. All of these small-scale livestock enterprises matter to developing-country governments because livestock account for some 30 per cent of their agricultural gross domestic product, a figure expected to rise to 40 per cent by the year 2030.

The diverse livestock production systems, like most crop production systems, are changing in response to globalization, urbanization, environmental degradation, climate change and science and technology. But the fastest changes are occurring within the livestock systems. That’s because the developing world’s rising human populations and household incomes are causing demand for milk, meat, eggs and other livestock foods to soar. As one would expect, livestock markets are growing and changing to serve that growing demand. What’s less appreciated are the changes being wrought by many of the billion-plus small-scale livestock keepers and sellers of the developing world who are changing the way they do business to help meet that growing demand.

The rate of change within the livestock sector is so rapid that many local populations of livestock developed by small-scale farmers over millennia no longer have time to evolve adaptations to their new circumstances or the new needs of their owners. They are simply dying out, and at unprecedented and accelerating rates. The Food and Agriculture Organization of the United Nations estimates that on average a breed disappears every month and that 20 per cent of our uniquely adapted breeds of domestic animals are at risk of extinction.

Over the last 150 years, farmers in industrialized countries supplanted their indigenous farm animals with a few high-producing breeds of a few species (chickens, pigs, cattle) suited to highly intensified production systems. The result is that 70 per cent of the world’s known livestock genetic diversity now resides on small farms and in remote regions of developing countries. With all the challenges facing developing countries and their one billion people living on less than a dollar a day, the question arises as to what immediate practical and cost-effective steps could be taken to preserve the wealth of their livestock genetic diversity.

From a research viewpoint, it’s clear that if we’re going to manage the world’s remaining livestock genetic resources well, we’ll have to characterize the remaining populations to decide which are worth saving and why, we’ll have to find ways of broadening use of those populations deemed useful, and we’ll have to conserve the most important livestock genetic diversity for possible future use—by poor and rich farmers alike.

From a political viewpoint, we’ll need new and appropriate institutional and policy frameworks, as well as lots of policy discussions, to find ways to strengthen national and international programs that support the conservation of livestock biodiversity.

While the political issues are being discussed at length at national and inter-governmental fora, four practical things can be started immediately to ensure that the world’s remaining livestock biodiversity is conserved for future generations.

(1) Keep it on the hoof.
Give local farmers and communities incentives for maintaining local livestock breeds by, for example, improving access by poor farmers and herders to markets, perhaps including niche markets, where they can sell their traditional livestock products.
 
 (2) Move it or lose it.
Encourage safe movements of livestock populations within and between countries, regions and continents to widen global access, use and conservation of farm animal genetic resources.
 
(3) Match breeds with environments.
Optimize livestock production by expertly matching livestock genotypes with farmer ambitions, fast-changing environments and specific natural resources, production systems and socio-economic circumstances.

 (4) Put some in the bank.
Freeze semen, embryos and tissues of local breeds and store them indefinitely to protect indigenous livestock germplasm against extinction due to the on-going declines in livestock diversity and to serve as long-term insurance against catastrophic losses due to wars, droughts, famines and other future shocks.

How science can help
It’s clear that most of the developing world’s indigenous livestock populations will not be able to adapt in time to their rapidly changing environments and circumstances; we’ll need new strategies and interventions to improve our conservation and husbandry of these resources. It’s also clear that advances in several scientific fields promise to give rise to those innovations.

On-going breakthroughs in livestock reproductive technologies and functional genomics, for example, as well as in the information fields of bioinformatics and spatial analysis, are being systematically marshaled for the first time to address this challenge.. And policy and agricultural systems analysts are today articulating more judicious thinking about the production and funding of global public goods.

Finally, whereas societies and countries tend to differ in their short-term interests in livestock production, their long-term interests—such as learning how to cope with unforeseen changes in livestock production systems and their environments—tend to converge. This creates real opportunities for international scientific, environmental and aid agencies to work with developing countries in collective action to conserve the world’s remaining livestock genetic diversity.

Visit the online press room for further information and a series of short films and high-quality images of the third world’s unique farm animal breeds.