Frontline livestock disease research in, and for, Africa highlighted in White House conversation today

Scientists at the International Livestock Research Institute (ILRI) are working with many partners to improve control of major diseases of cattle in Africa.

East Coast fever in African cattle, one of the target diseases of the International Livestock Research Institute (ILRI), is included in a message today at the White House delivered by Raj Shah, administrator of the United States Agency for International Development. Shah will remind his audience that East Coast fever kills one cow every 30 seconds in Africa. Watch the live stream and join the conversation at 11am ET at the White House today, when Shah and others will answer questions about Innovations for Global Development.

Two other target diseases of ILRI’s are contagious bovine pleuropneumonia and trypanosomosis. All three diseases affect millions of the world’s poorest farmers. And all remain underfunded because they occur mostly in developing regions of the world.

ILRI recently produced three short films on research battles against these diseases.

CBPP: A new vaccine project starts
Contagious bovine pleuropneumonia (known by its acronym, CBPP) is found throughout most of sub-Saharan Africa, where it causes most harm in pastoralist areas. The disease kills up to 15% of infected animals, reduces the meat and milk yields of infected cows (milk yields drop by up to 90%), and reduces the ability of infected oxen to pull ploughs and do other kinds of farm work. An existing ‘live’ vaccine against this disease produces severe side effects and gives only limited protection.

Watch this short (runtime: 2:35) ILRI film, ‘Developing a Vaccine for a Highly Contagious Cattle Disease’, on the research recently begun at ILRI and its partner institutes, including the Kenya Agricultural Research Institute, to develop a more effective vaccine against this form of acute cattle pneumonia. This research is funded by the German Federal Ministry for Economic Cooperation and Development (BMZ).

Trypanosomosis: A genetic approach to its control
Trypanosomosis, called sleeping sickness in humans, is a wasting disease that maims and eventually kills millions of cattle in Africa and costs farmers billions of dollars annually.

In 2011, using the latest gene mapping and genomic technologies, researchers at ILRI’s Nairobi, Kenya, animal health laboratories and at institutes in the UK and Ireland identified two genes that enable Africa’s ancient N’Dama cattle breed to resist development of the disease when infected with the causative, trypanosome, parasite.

This breakthrough should eventually make it easier for Africa’s livestock breeders to breed animals that will remain healthy and productive in areas infested by the parasite-carrying tsetse fly. The international team that came together in this project is an example of the disciplinary breadth and agility needed to do frontline biology today, and the complex research approaches and technologies now needed to unravel fundamental biological issues so as to benefit world’s poor.

ILRI’s collaborating institutes in this work include Liverpool University; the Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh; Trinity College, Dublin; and the University of Manchester. The Wellcome Trust funded the bulk of the work in this project.

Watch this short (runtime: 5:28) ILRI film, ‘Battling a Killer Cattle Disease’, on the international partnership that made this breakthrough in trypanosomosis research.


Trypanosomosis: A community-based approach to its control
Another ILRI research team has been working with partners and livestock keepers in West Africa to develop safer ways to treat their cattle with drugs to protect them from trypanosomosis. Parasite resistance to the trypanocidal drugs used to treat and prevent this disease has emerged in many areas and is a growing problem for farmers and governments alike. This collaborative research team recently developed good practices in the use of trypanocides to slow the emergence of drug resistance in the parasites that cause the disease. This film describes the disease and these practices, known as ‘rational drug use’, clearly and in detail to help veterinary workers and farmers treat animals safely.

ILRI’s partners in this project include the Centre International de Recherche-Développement sur l’Elevage en Zone Subhumid, Freie Universität Berlin, Laboratoire Vétérinaire Centrale du Mali, Centre Régional de la Recherche Agricole Sikasso, Project de Lutte contra la Mouche Tsétsé et la Trypanosomose (Mali), Pan-African Tsetse and Trypanosomiasis Eradication Campaign (Mali), University of Hannover, Direction Nationale de l’Elevage et l’Institut de Recherche Agronomique de Guinée, Tsetse and Trypanosomosis Control Unit (Ghana), Institut National de la Recherche Agronomique du Bénin and the Nigerian Institute of Trypanosomiasis Research. The project was funded by the German Federal Ministry for Economic Cooperation and Development (BMZ).

Watch this ILRI film, ‘Community-Based Integrated Control of Trypanosomosis in Cattle’ (runtime: 12.48), for clear instructions on how to deploy drugs to better control trypanosomosis over the long term.

US-Kenyan team developing vaccine to protect African cattle against deadly East Coast fever

Dissecting ticks to extract parasites at ILRI

Staff of ILRI’s Tick Unit dissect ticks to extract the parasite Theileria parva, which causes East Coast fever in cattle (photo credit: Brad Collis).

A vaccine that protects cattle against East Coast fever, a deadly disease in eastern and central Africa, is being developed by scientists in Kenya working for the International Livestock Research Institute (ILRI) jointly with scientists at the Agricultural Research Service (ARS) Animal Disease Research Unit in Pullman, Washington, which is part of the United States Department of Agriculture (USDA). ARS is the USDA’s chief intramural scientific research agency. This research, which looks at combination vaccines for tick-borne diseases, supports USDA’s priority of promoting international food security.

Scientists are focusing on the tick that transmits the parasite responsible for East Coast fever. Because this host tick and its parasite are similar to the tick and parasite that cause babesiosis, commonly called Texas cattle fever, in the United States, developing a vaccine for East Coast fever could lead to a vaccine for Texas cattle fever, which is a serious illness for wild and domesticated animals, especially cattle.

In an initial study, scientists developed a polymerase chain reaction test that detects parasite DNA in ticks. They used tick populations that were produced at ILRI to have different susceptibilities to infection with the parasite. Two different strains of ticks—Muguga and Kiambu—were compared. The Muguga ticks had a low level of parasitic infection, whereas the Kiambu ticks were highly susceptible.

Understanding genetic differences between these two tick populations could lead to the identification of proteins that might be good targets for a vaccine to help control East Coast fever.

This international partnership is part of a global community effort to control diseases that limit food and fiber production. Although East Coast fever isn’t currently a problem in the United States, this collaborative research aids in keeping the US and other countries free of the disease. Results of this collaborative research may be applied to help control similar parasitic diseases.

Findings from this research were published in Gene and in the Journal of Medical Entomology.

Read more at the United States Department of Agriculture Agricultural Research Service: Partnership focuses on developing East Coast fever vaccine, 4 Oct 2011.

Read more about this research in the October 2011 issue of Agricultural Research Magazine.

Read more about this project on ILRI’s website.

World Bank president says it’s time to push the CGIAR agricultural research agenda


Robert Zoellick, president of the World Bank (image on Flickr by International Monetary Fund).

Robert Zoellick, president of the World Bank, spoke today (6 July 2011) at the 40-year-anniversary celebrations of the Consultative Group on International Agricultural Research (CGIAR) at the World Bank in Washington, DC. His presentation followed a film about the historical beginnings of the CGIAR, including interviews of Norman Borlaug and Robert McNamara.

‘Both Norman Borlaug and Robert McNamara believed that it is possible to defeat hunger,’ Zoellick said. ‘They both worked to boost food production through science. And they both died within a few months of each other in 2009.’

Zoellick said that agriculture is a subject of strong personal interest for him; he grew up around farm families in the American midwest. And he said few things were as satisfying for him as speaking to farm families that had doubled, tripled or quadrupled their incomes through improved farm practices, which in turn rely on agricultural science.

Zoellick said that high food prices today are pushing 44 million people into poverty, and the global population is expected to reach 9 billion by 2050.

‘We’ll have to increase food production by 70% to feed everyone by mid-century,’ he said. ‘And we’ll have to do that with the rate of production increases dropping and in the face of climate change, which is predicted to decrease crop yields in Africa by 28%.’

Zoellick reported on some of the great achievements of the CGIAR over the last four decades. Among them, he cited the following work by the International Livestock Research Institute (ILRI) and its partners, including the Kenya Agricultural Research Institute.

There is now a vaccine for East Coast fever, which kills 1 cow every 30 seconds in 11 countries of Africa. The vaccine is expected to save more than a million cattle, with benefits worth up to USD270 million a year in the countries where the disease is now endemic.

‘I’ve been urging the G20 to put food first this year,’ said Zoellick. ‘One of my key messages at both G8 and G20 is the need to support agriculture and agricultural research.

“I see a 5-step challenge for the CGIAR,’ said Zoellick.
(1) Donor agencies increase funding to the CGIAR from USD670 million last year to USD1 billion by 2013.
(2) Donor agencies commit to multi-year predictable funding.
(3) Research institutions place greater focus on research to reduce post-harvest food losses (which can make up 20–50% of yields).
(4) Developing countries themselves increase their investments to agricultural research and development.
(5) Researchers and their supporters stand up for science and fight the current trend of cloaking ignorance in fashionable causes.

The moment is right to push the agricultural research agenda, Zoellick said. ‘The agricultural sector is fertile for innovation. And we can demonstrate the intimate links between this work and two of the big issues of our day—food security and climate change.’

Given the ammunition, he said, he’ll push this agenda forward.

Need for delivery networks for East Coast fever vaccine highlighted in audio interview

ITM Vaccine

East Coast fever is a major livestock disease in eastern, central and southern Africa. Transmitted by ticks infected with a protozoan parasite (Theileria  parva), it kills over 1 million animals each year, damaging livelihoods of poor livestock keepers and farmers in 11 countries. Researchers from organizations such as the International Livestock Research Institute (ILRI) are working to find innovative ways to protect African livestock against this and other ‘orphan’ livestock diseases.

One of the successes in the efforts to fight East Coast fever has been the development of a ‘live’ vaccine, which includes the whole parasite, weakened so as not to cause severe disease thatcame after over 30 years of research by organizations including ILRI and the Kenya Agricultural Research Institute. This long-term research was funded by UK Department for International Development and other donors of the Consultative Group on International Agricultural Research. The vaccine is now registered in Kenya, Malawi and Tanzania and its widespread use is being promoted so that it can give protection to the animals on which many poor people in these countries depend.

In the following audio interview, John McDermott, Deputy Director General-Research at ILRI, speaks in Nairobi of the need ‘to develop networks that can distribute and deliver’ the vaccine to those who need it, which should encourage its widespread use. This interview, produced in July 2010 by AFGAX Radio (, also shares the expectations of a veterinarian from Kenya and a farmer from Tanzania of how the vaccine will help livestock keepers.

To listen to the interview, visit:

More information about the East Coast fever live vaccine is available in the following article.

Livestock vaccine offers lifeline to many

ITM Vaccine

A vaccine is being made available to save the lives of a million cattle in sub-Saharan Africa against a lethal disease and to help safeguard the livelihoods of people who rely on their cattle for their survival.

East Coast fever is a tick-transmitted disease that kills one cow every 30 seconds. It puts the lives of more than 25 million cattle at risk in the 11 countries of sub-Saharan Africa where the disease is now endemic. The disease endangers a further 10 million animals in regions such as southern Sudan, where it has been spreading at a rate of more than 30 kilometres a year. While decimating herds of indigenous cattle, East Coast fever is an even greater threat to improved exotic cattle breeds and is therefore limiting the development of livestock enterprises, particularly dairy, which often depend on higher milk-yielding crossbred cattle. The vaccine could save the affected countries at least a quarter of a million US dollars a year.

Registration of the East Coast fever vaccine is central to its safety and efficacy and to ensuring its sustainable supply through its commercialization. The East Coast fever vaccine has been registered in Tanzania for the first time, a major milestone that will be recognized at a launch event in Arusha, northern Tanzania, on May 20. Recognizing the importance of this development for the millions whose cattle are at risk from the disease, governments, regulators, livestock producers, scientists, veterinarians, intellectual property experts, vaccine distributors and delivery agents as well as livestock keepers – all links in a chain involved in getting the vaccine from laboratory bench into the animal – will be represented.

An experimental vaccine against East Coast fever was first developed more than 30 years ago at the Kenyan Agricultural Research Institute (KARI). Major funding from the UK Government’s Department for International Development (DFID) and others enabled work to produce the vaccine on a larger scale. When stocks from 1990s ran low, the Africa Union/Interafrican Bureau for Animal Resources and chief veterinary officers in the affected countries asked the International Livestock Research Institute (ILRI) to produce more and ILRI subsequently produced a million doses of the vaccine to fill this gap. But the full potential for livestock keepers to benefit from the vaccine will only be achieved through longer term solutions for the sustainable production, distribution and delivery of the vaccine.

With $28US million provided by the Bill & Melinda Gates Foundation and DFID, a not-for-profit organization called GALVmed (Global Alliance for Livestock Veterinary Medicines) is fostering innovative commercial means for the registration, commercial distribution and delivery of this new batch of the vaccine. A focus on sustainability underpins GALVmed’s approach and the Global Alliance is bringing public and private partners together to ensure that the vaccine is available to those who need it most.

Previous control of East Coast fever relied on use of acaracide dips and sprays, but these have several drawbacks. Ticks can develop resistance to acaracides and regular acaricide use can generate health, safety and environmental concerns. Furthermore, dipping facilities are often not operational in remote areas.

This effective East Coast fever vaccine uses an ‘infection-and-treatment method’, so-called because the animals are infected with whole parasites while being treated with antibiotics to stop development of disease. Animals need to be immunized only once in their lives, and calves, which are particularly susceptible to the disease, can be immunized as early as 1 month of age.

Over the past several years, the field logistics involved in mass vaccinations of cattle with the infection-and-treatment method have been greatly improved, due largely to the work of a private company, VetAgro Tanzania Ltd, which has been working with Maasai cattle herders in northern Tanzania. VetAgro has vaccinated more than 500,000 Tanzanian animals against East Coast fever since 1998, with more than 95% of these vaccinations carried out in remote pastoral areas. This vaccination campaign has reduced calf mortality in herds by 95%. In the smallholder dairy sector, vaccination reduced the incidence of East Coast fever by 98%. In addition, most smallholder dairy farmers reduced their acaracide use by at least 75%, which reduced both their financial and environmental costs.

Notes for Editors

What is East Coast fever?
East Coast fever is caused by Theleria parva (an intracellular protozoan parasite), which is transmitted by the brown ear tick Rhipicephalus appendiculatus. The parasites the tick carries make cattle sick, inducing high fever and lympho-proliferative syndrome, usually killing the animals within three weeks of their infection.

East Coast fever was introduced to southern Africa at the beginning of the twentieth century with cattle imported from eastern Africa, where the disease had been endemic for centuries. This introduction caused dramatic cattle losses. The disease since then has persisted in 11 countries in eastern, central and southern Africa – Burundi, Democratic Republic of Congo, Kenya, Malawi, Mozambique, Rwanda, Sudan, Tanzania, Uganda, Zambia and Zimbabwe. The disease devastates the livelihoods of small-scale mixed crop-and-livestock farmers, particularly smallholder and emerging dairy producers, as well as pastoral livestock herders, such as the Maasai in East Africa.

The infection-and-treatment immunization method against East Coast fever was developed by research conducted over three decades by the East African Community and the Kenya Agricultural Research Institute (KARI) at Muguga, Kenya ( Researchers at the International Livestock Research Institute (ILRI), in Nairobi, Kenya (, helped to refine the live vaccine. This long-term research was funded by the UK Department for International Development (DFID) ( and other donors of the Consultative Group on International Agricultural Research (CGIAR) (

The first bulk batch of the vaccine, produced by ILRI 15 years ago, has protected one million animals against East coast fever, with the survival of these animals raising the standards of living for many livestock keepers and their families. Field trials of the new vaccine batch, also produced at ILRI, were completed in accordance with international standards to ensure that it is safe and effective.

How is the vaccine stored and administered?
Straws of the East Coast fever vaccine are stored in liquid nitrogen until needed, with the final preparation made either in an office or in the field. The vaccine must be used within six hours of its reconstitution, with any doses not used discarded. Vaccination is always carried out by trained veterinary personnel working in collaboration with livestock keepers. Only healthy animals are presented for vaccination; a dosage of 30% oxytetracycline antibiotic is injected into an animal’s muscle while the vaccine is injected near the animal’s ear. Every animal vaccinated is given an eartag, the presence of which subsequently increases the market value the animal. Young calves are given a worm treatment to avoid worms interfering with the immunization process.

Case studies illustrating the impact of the infection-and-treatment vaccine on people’s lives are available on the GALVmed website at:
For more information about the GALVmed launch of the live vaccine, on 20 May 2010, in Arusha, Tanzania, go to

East Coast fever vaccine comes to market in eastern and southern Africa

As the board of trustees of the International Livestock Research Institute (ILRI) meets in Addis Ababa, Ethiopia, this week, reviewing ILRI’s animal health research among other work, an ILRI vaccine project is highlighted in a new publication, DFID Research 2009–2010: Providing research evidence that enables poverty reduction. The UK Department for International Development (DFID) and the Bill & Melinda Gates Foundation both support the Global Alliance in Livestock Veterinary Medicines (GALVmed), which works to convert existing or near-market technologies into livestock medicines and vaccines for use in developing countries. The notable success of this strategy in 2009, says DFID, is an East Coast fever vaccine produced by ILRI. East Coast fever is a tick-transmitted disease that kills one cow every 30 seconds in eastern, central and southern Africa, where it threatens some 25 million cattle in 11 countries and is now putting at risk a further 10 million animals in new regions, such as southern Sudan, where the disease has been spreading at a rate of more than 30 kilometres a year. The disease is a major cattle killer. In herds kept by the pastoralist Maasai, it kills 20–50% of all unvaccinated calves, which makes it difficult and often impossible for the herders to plan for the future or to improve their livestock enterprises. A vaccine for East Coast fever could save over a million cattle and up to £170 million a year in the 11 countries where the disease is now endemic. An experimental vaccine against East Coast fever, which makes use of live but weakened parasites, has existed for more than three decades, with batches mass produced in ILRI’s Nairobi laboratories. Although constrained by the need for a ‘cold chain’ to keep the ‘live’ vaccine viable, field use of this vaccine in Tanzania and elsewhere has proved it to be highly effective and in demand by poor livestock keepers, who are paying for the vaccine to keep their animals alive. GALVmed has worked with ILRI and private companies, such as VetAgro Tanzania Ltd., to make East Coast fever vaccine available to the livestock keepers who need it most and to scale up production in future. With £16.5 million provided by DFID and the BMGF, GALVmed began working on the registration and commercial distribution and delivery of a new batch of the vaccine produced by ILRI. The vaccine was successfully registered in 2009 in Malawi and Kenya, with Tanzania and Uganda expected to follow soon. If it is approved in Uganda, it will be the first veterinary vaccine formally registered in that country. GALVmed is now working to establish viable commercial production and delivery systems, aiming that by the end of 2011, all aspects of the production and delivery of East Coast fever vaccine are in private hands.

Scottish and Kenyan research groups collaborate to improve control of deadly cattle disease in Africa

ITM Vaccine New project launched to investigate how immunity develops in cattle to fatal diseases caused by different strains of tick-borne parasites

More than 1 in 5 people in sub-Saharan Africa live below the poverty line. Many of these people live in rural communities heavily dependent on livestock for their livelihoods. One of the most important diseases of cattle in this region is East Coast fever, a lethal infection of cattle caused by the tick-borne parasite Theileria parva. This disease afflicts cattle populations in 16 countries across eastern, central and southern Africa and is the most economically important cattle disease in 11 of these countries. Losses due to East Coast fever exceed US$300 million annually. Imported high-yielding breeds of cattle, which are increasingly being used to satisfy increasing demands for milk in this region, are particularly susceptible to this disease.
Although East Coast fever can be controlled by treating infected animals with anti-parasitic drugs and by regularly spraying or dipping animals with anti-tick chemicals, these methods are difficult to apply and costly for poor livestock keepers. Vaccination offers a more sustainable means of controlling the disease.
Cattle can be immunized against the disease by infecting them with live parasites while simultaneously treating the animals with long-acting antibiotics. Because several strains of the parasite exist in the field, this vaccination comprises a mixture of strains. A vaccine cocktail mixing three parasite strains is being used successfully in some endemic countries, but applying this so-called ‘live vaccine’ remains hindered by difficulties in maintaining the quality of the vaccine material and in finding ways to distribute the vaccine, which needs to be kept cold, cost-effectively to widely dispersed cattle herders. In addition, it remains uncertain whether the current mix of parasite strains in the vaccine is optimal for obtaining robust immunity.
Recent studies of East Coast fever have shown that the so-called ‘protective’ proteins of the causative parasite—that is, the antigenic molecules that are recognized by the T lymphocytes of the bovine immune system and thus help animals fight development of disease—vary among the different strains of the parasite that exist in the field. This project will build on these advances to investigate the nature and extent of variability in these antigens between parasite strains. This knowledge will help scientists understand the factors that determine which parasite strains induce protective immune responses in animals that have been vaccinated.
Results of the project should provide methods for maintaining high quality of the current live vaccine and identifying parasite strains that could be incorporated into an improved second-generation live vaccine. The information should also help researchers design new, genetically engineered, vaccines, which comprise not whole parasites but rather antigenic molecules of the parasite—and thus are safer, cheaper and easier to distribute than the current live vaccine.
‘This is an important project for us,’ said Philip Toye, a vaccine developer from International livestock Research Institute (ILRI). ‘The information we expect to generate will greatly increase our understanding of the current live vaccine that is being used to protect animals against East Coast fever. We can use this information to get this vaccine into wider use in the region.’
This project is being conducted jointly by scientific groups at the universities of Edinburgh and Glasgow, in Scotland, and at ILRI, in Nairobi. The project is part of a new initiative called Combating Infectious Diseases of Livestock in Developing Countries funded by the UK’s Biotechnology and Biological Services Research Council, the UK Department for International Development and the Scottish Government. ILRI’s research in this area is also supported by members of the Consultative Group on International Agricultural Research.

ILRI vaccine advances published in February 2006 PNAS journal

Public-private partnership makes major step towards improving livestock health and reducing poverty.

The devastating effects of East Coast fever on the livelihoods of small-scale farmers may one day be a thing of the past as a team of international scientists moves closer towards the development of a vaccine.

“East Coast fever is an intractable problem that ravages cattle of the poor in Africa. The good news is that this can be solved by high-tech science and technological innovations, achievable through strategic partnerships’’. Evans Taracha – ILRI East Coast Fever Vaccine Project Leader

Every year, East Coast fever destroys the small farmer’s dream of escaping poverty in Africa. Killing more than a million cattle and costing some $200 million annually, this tick-borne disease rages across a dozen countries in eastern and central Africa. Now, an international team of scientists has taken the first major step toward a vaccine to prevent East Coast fever. Their work, published in the February 13-17 early online edition of the Proceedings of the National Academy of Sciences (PNAS), shows how genomics can generate pivotal new vaccines.

In the study, scientists from five institutions, including the International Livestock Research Institute (ILRI) and The Institute for Genomic Research (TIGR), identify five vaccine targets, or candidate proteins that could form the basis for an East Coast fever subunit vaccine. Based on combined bioinformatics analyses and lab tests, these proteins appear to provide a protective immune response to the disease. “This initiative took just three years, after many years of scientists trying other methods,” remarks Vishvanath Nene, former ILRI staff member, a study author and molecular biologist at TIGR. “It’s a huge jump forward.”

To make the jump, researchers used the genome sequence of the parasite responsible for East Coast fever. A tick-borne parasite, Theileria parva, causes the disease. When ticks infected with T. parva bite cattle, they transmit the parasite, launching the disease that typically kills cattle within a month. In July, 2005, TIGR led a research team that published T. parva’s genome sequence, representing roughly 4,000 genes, in Science.

In the current study, Nene, along with Malcolm Gardner and Claire Fraser-Liggett, also of TIGR, relied on known biology to search T. parva’s genome for potential vaccine proteins. First, scientists know that immunity to the parasite, and thus East Coast fever, emerges from immune system cells known as killer T cells. Second, they know that T. parva is an intracellular pathogen–it infects and secretes proteins inside cattle white blood cells, which become malignant. The white blood cell then unwittingly passes small fragments of the secreted parasitic proteins associated with a certain type if its own proteins along to its cell surface. And this is where a vaccine could come in: A vaccine made of the T. parva proteins found on the surface of host cells should trigger an immune response in cattle. Vaccinated cattle would then be protected from the parasite.

To find potential vaccine antigens, the TIGR researchers scanned T. parva’s entire genome for genes that make secreted proteins. In particular, they searched for genes that make a “secretion signal,” a telltale peptide sequence found at the start of secreted proteins. Sure enough, the scientists found some 400 T. parva genes containing the secretion signal. This set of genes provided a starting pool of candidate proteins. Based on further tests, the study’s research team, led by ILRI of Nairobi, Kenya, cloned 55 candidate antigen genes and screened those genes for response by killer T cells taken from cattle immune to East Coast fever. To complement TIGR’s gene selection strategy, ILRI also incorporated a random screen of T. parva DNA for vaccine candidates.

In total, the team found five candidate vaccine antigens. In lab tests, these antigens triggered a response from cattle immune killer T cells. Going a further step further, the scientists inoculated cattle with these antigens and then gave the cattle a potentially lethal dose of T. parva. When compared with control animals, vaccinated cattle showed significantly stronger immune response to the parasite.

“This study is a true milestone,” says Fraser-Liggett, president of TIGR. “It’s one of the first to take advantage of genomic technologies and build a test vaccine using immune killer T cells as a screening reagent.” In addition to TIGR and ILRI, the research team included scientists from: the Ludwig Institute for Cancer Research in Brussels; the Wellcome Trust Center for Human Genetics in Oxford; Sanofi Pasteur in Toronto; the University of Edinburgh; and Merial SAS, an international animal health company. ILRI and Merial have partnered to develop a vaccine against East Coast fever.

By using genomics to understand and fight T. parva, scientists may make advances against related parasites that cause malaria, tuberculosis, and other diseases in which killer T cells also play a role in immunity. What’s more, because T. parva launches a cancer-like illness inside the white blood cells of cattle, it may provide a model system for understanding the mechanics of cancer biology.

But for Nene, who was born in Kenya and worked at ILRI for 15 years before coming to TIGR in 2001, the march against East Coast fever is significant reward, itself. “This disease takes an enormous toll on the local society and economy of rural areas across eastern and central Africa, including Maasai and other pastoral communities,” he says. In particular, East Coast fever kills cattle kept by families trying to rise out of poverty. If researchers are successful, Nene notes, the entire region will have new reason to hope for a better life. Evans Taracha, ILRI project leader, also highlights the importance of strategic research partnerships to overcome this and similar diseases.

TIGR’s portion of the PNAS study was funded independently by TIGR and by sub-contract from the Animal Health Program of the United Kingdom Department for International Development, with previous contributions from J. Craig Venter and the ILRI for the T. parva genome project.

ILRI wins two top awards

ILRI vaccine developers won an award for Outstanding Scientific Article. Another ILRI team conducting research on savannah ecosystems shared an award for their innovative collaboration with Maasai landowners in Kenya.

Scientific Recognition

Each year, the Consultative Group on International Agricultural Research (CGIAR) recognizes the scientific contributions of the 15 agricultural research centres it supports through its Science Awards, presented at its Annual General Meeting (AGM), held each year in December.

At the CGIAR’s AGM held in Washington DC at the end of last year, scientists from ILRI and The Institute for Genomic Research (TIGR) picked up the award for ‘Outstanding Scientific Article’ for their paper, published in the top scientific journal Science, ‘Genome Sequence of Theileria parva: a Bovine Pathogen that Transforms Lymphocytes’. The team, led by Malcolm Gardner of TIGR, received a cash prize of US$10,000, which is being donated to fund travel for staff and students to attend conferences in this area.

The paper’s second author, ILRI scientist Richard Bishop, said: “We are delighted to receive this award. Our multi-partner collaboration and recent discoveries illustrate that African science is forging ahead – we are collaborating with world-class players and producing world-class science right here in Africa, for Africa.”

ILRI wins 2 awards

Pictured above from left to right: ILRI’s Director of Research, John McDermott, and TIGR scientist (and former ILRI staff member) Vish Nene, with the Award for ‘Outstanding Scientific Paper’. Looking on is ILRI’s Director General Carlos Seré and Bruce Scott, ILRI Director, Partnership and Communications.

Download TIGR/ILRI Press Release

Innovative Collaboration with Civil Society

The CGIAR also recognizes the contributions of innovative collaborations between CGIAR-supported centres and Civil Society Organizations (CSOs) through its ‘Innovation Marketplace Awards’. This year, 46 CSOs were invited to participate at the CGIAR Innovation Marketplace to showcase their collaborative work and share experiences.

ILRI’s collaboration with the Kitengela Ilparakuo Landowners Association (KILA) was one of four collaborations to win a Judges’ Award with a cash prize of US$30,000, to use for further collaborative work. ILRI has been collaborating with the Maasai of Kitengela Plains, located next to Nairobi National Park, in Kenya, since 2002. They have devised means to ensure that people, livestock and wildlife can live in harmony and have lobbied government to reduce fencing to allow the annual migration of wildlife though the Kitengela Plains, thus helping to prevent conflicts between wildlife and people and their livestock. Other collaborators of the program are Kenya Wildlife Service, Friends of Nairobi National Park, The Wildlife Foundation and Kajiado County Council.

The prize award was collected by ILRI’s CSO representative Ogeli Ole Makui and ILRI’s Mohammed Said. Makui said: “This award means so much to us. Our major challenge is to move forward and continue with the collaboration to help the community move forward. The Landowners Association will be using the prize money to fund further collaborative work.

ILRI wins 2 awards

Pictured above, from left to right: CGIAR Chair and Vice President of the World Bank Kathy Siena, the Program Officer of the Kitengela Land Lease Program, Ogeli Ole Makui and ILRI scientist Mohammed Said.

Download the award-winning poster

ILRI Awards

Dr Carlos Seré , ILRI’s Director General, said: “ILRI’s work is frequently recognized at the CGIAR’s annual awards. Each year the bar is raised and this year was no exception. Competition was tough with a very high standard of entries in all categories. We wish to extend our congratulations to the winners from our sister centres and are delighted that ILRI has won two of the top awards this year. This recognizes our commitment and contributions to both science and society.”

ILRI wins awards

Pictured above from left: ILRI Directors Carlos Seré and Bruce Scott and the President of the World Bank, Paul Wolfowitz at the CGIAR exhibit booth at the AGM in December 2006 in Washington, DC.

ILRI scientist Simon Graham wins international ‘Promising Young Scientist’ award

Young scientist receives prestigious award at the Consultative Group on International Agricultural Research (CGIAR)'s annual general meeting.

Simon Graham Award

Simon receives his awardSimon Graham, a veterinary immunologist at the Nairobi-based International Livestock Research Institute (ILRI), was bestowed the ‘Promising Young Scientist Award’ by the Consultative Group on International Agricultural Research (CGIAR) on 7 December 2005 by Ian Johnson, CGIAR Chairman and World Bank Vice President for Sustainable Development. This prestigious award was presented at the annual general meeting of the CGIAR, held in Marrakech, Morocco.

The award went to 33-year-old Graham for his research leading to the development of a sensitive and robust system for screening molecules that cause East Coast fever (ECF), a fatal disease of cattle in sub-Saharan Africa. Graham’s research, based at ILRI’s Nairobi laboratories, may also contribute to ongoing efforts to control tropical theileriosis, a cattle disease which puts 250 million cattle around the world at risk.

Simon Graham Dec 2005 During his first post-doctoral position at the Centre for Tropical Veterinary Medicine, Edinburgh, UK, in 1998, he developed an improved rapid screening and production of vaccines against the protozoan parasite Theileria annulata, which is responsible for tropical theileriosis.

In 2000, Graham joined a large multidisciplinary research team at ILRI whose goal is to develop a ‘subunit’ Simon At Workvaccine against the related protozoan parasite Theileria parva. (Subunit vaccines are based on molecular bits of parasites rather than whole parasites.) T. parva causes East Coast fever (ECF), which costs 11 countries of eastern, central and southern Africa US$300 million a year. ECF puts 28 million cattle at risk and annually kills 1 million animals, 90 percent of which are kept by poor dairy farmers and herders. There is a high demand from poor livestock owners for a cheap, effective, safe and easy-to-deliver subunit vaccine against this devastating disease of cattle.

Simon Graham and his ILRI team are working in collaboration with several centres of excellence, including the veterinary pharmaceutical giant Merial and a leading human vaccine research group at the University of Oxford, UK, to evaluate the ability of these molecules to protect cattle against ECF. Initial results are encouraging—there appears to be a significant association between an animal’s induction of killer T-cell responses and its levels of protection against development of disease. Graham’s results have within a short space of time had a major impact in moving the research close to its ultimate goal of producing a vaccine that will sustainably control not only ECF but also tropical theileriosis. The vaccine candidates identified by Graham have been filed with the US Patent & Trademark Office and the research is now being prepared for publication in the prestigious journal Proceedings of the National Academy of Sciences (PNAS).

Research breakthrough against cattle killer

Innovation, capacity building and partnerships to combat a deadly African cattle disease are in the news. This month, ILRI's East Coast fever research is featured in two top journals – Science and the Journal of International Development. On 1 July 2005, America's leading scientific journal Science reported on the genome sequencing of a deadly parasite, Theileria parva, which causes East Coast fever (ECF), an infectious tick-borne disease that kills two cows every minute in Africa. This ground-breaking research was led by scientists at the International Livestock Research Institute (ILRI) in Nairobi Kenya, and The Institute for Genomic Research (TIGR), based in the USA. In addition to advancing research into parasitic livestock diseases, this research will also be valuable to scientists studying human malaria and cancers. TIGR/ILRI News Release ILRI News Backgrounder The ECF project is also of great interest to international development practitioners and policymakers. An article published in the July edition of the Journal of International Development by James Smith of Edinburgh University uses the ECF project as a case study example of how institutional research and development is changing. The old model 'technology-led' projects, often criticised for failing to deliver effective and affordable products downstream, is being replaced with  new model partnerships that have innovation and capacity building built in and that aim to deliver demand-led products of benefit to the poor in developing countries. Smith describes the ECF project as 'a potentially new model of… research and development partnership' which is an example of “a more ‘complete’ approach to innovation”. The ECF project has many partners and a very clear product focus. The project builds capacity in new ways, as those involved are forced to break out of their traditional boundaries. Scientists who were interviewed felt the project was encouraging them to think in new ways – like farmers and like businesspeople. There are many examples of 'good' technologies still sitting on shelves because scientists failed to consider the needs and circumstances of the end users of the technologies, such as whether the product would be accessible and affordable to farmers. International development professionals and donors are becoming increasingly focused on capacity building, partnerships, innovation systems and, ultimately, the delivery of tangible results, including products, as integral parts of R&D activity. There is a shift away from projects that could be described as 'research for the sake of research' to demand-led research, operated by many partners as a collaborating network that accomplishes a specific goal. John McDermott, ILRI’s Deputy Director General – Research said: 'The ECF Project illustrates ILRI’s new modus operandi, which generates innovation through strategic partnerships. Each partner is doing what they are best at – with the shared goal of delivering an effective and affordable vaccine for East Coast fever that will ultimately benefit millions of small-scale farmers in Africa.' There are lessons to be learned and the ECF project experience looks likely to be scrutinised further to gain more insights into new ways of doing R&D for greater benefits to the world's poor. Smith concludes: 'The East Coast fever vaccine project does appear to offer a new approach to prioritizing research and design, building capacity, and eventually producing an efficacious product. It does appear, however, that the positive spin-offs from the approach may not have been pre-planned but that the approach was shaped by a combination of the contingencies of vaccine production and the realities of institutional R&D in Kenya. The trick will be to identify exactly what makes this approach successful…'.

Biosciences for development

Today the spotlight is on European partners in livestock biosciences for development.
European donors and research institutions working in partnership with ILRI and other CGIAR Centres to speed up agricultural development in poor countries will be highlighted at a breakfast meeting at the 2005 World Bank Sustainable Development European Forum entitled ‘Managing Ecosystems and Social Vulnerabilities in the 21st Century: Towards a More Secure World’, to be held in Paris on 14-15 June 2005. The Forum provides an opportunity to update European bilateral donors on the strategy and work program for the World Bank’s Environmentally & Socially Sustainable Vice Presidency. A significant portion of the agenda is reserved for in-depth, issues-based break-out sessions.

Examples of ILRI projects with European partners are summarized below.

Saving Africa’s unique indigenous cattle breeds critical to its poorest people
In 1998, with funding from Ireland Aid and other European donors, the Africa-based International Livestock Research Institute (ILRI) teamed up with Trinity College, Dublin, to analyse the genetic diversity of indigenous African cattle populations. This project completed molecular diversity datasets from the two centres, unravelled the genetic make-up of African cattle and identified priority cattle breeds for conservation or utilization for the benefit of the farmer communities. The project also helped nations develop strategies for conserving these animals and broadening their use. The project supported evidence that the African continent was a likely center of origin of cattle pastoralism. The latter award-winning research, published in the leading research journal Science, raised awareness of the genetic wealth of Africa’s indigenous cattle populations. African countries are now taking steps to conserve, characterize and make better use of them.

A public-private partnership for technological innovation against a lethal African cattle disease
The East Coast fever vaccine project is an initiative funded by the UK’s Department for International Development (DFID) to design and disseminate a bio-engineered vaccine against a parasite that kills cattle across eastern, central, and southern Africa. A complex set of partnerships between public and private sectors across several continents, including the International Livestock Research Institute (ILRI), in Kenya, the Ludwig Institute for Cancer Research, in Belgium, and the University of Oxford, UK, has played an important role in moving the science forward. The multinational veterinary pharmaceutical company Merial, headquartered in France, is helping to produce the vaccine for trial and will be responsible for the delivery of the vaccine among poor countries. A high degree of complementarity exists between the major partners. ILRI has reached an advanced state of research on the protozoan parasite that causes East Coast fever, bovine immunology and the economic impacts of the disease. Merial produces the vaccine candidates and has been working with Oxford on novel delivery system with potential spin-offs for other human and veterinary vaccines. The project is an example of conceiving and funding a ‘system of innovation’ within the CGIAR, one which cuts across research institutions in new ways, building capacity across the widest possible spread of partners, including NARS.

Conserving a unique genetic resource and way of life among Ankole pastoralists in East Africa
In late 2003, with funding from Austria, scientists from the Africa-based International Livestock Research Institute (ILRI) and the BOKU University of Natural Resources and Applied Life Sciences, in Austria, launched a project to identify indigenous selection criteria and genetic diversity in African longhorn Ankole cattle. The results of this project will improve and sustain the livelihoods of poor Ankole cattle keepers in the four East African countries where these unique cattle are found: Uganda, Burundi, Rwanda and Tanzania. Specifically, the project is facilitating community-based delivery of technical interventions that are genetically improving this breed to meet the needs of their pastoral owners. In the process, the project will help the pastoral communities sustain their environment and culture as well as the genetic diversity of their breed. Indigenous knowledge of animal husbandry and breeding are being captured, as well as selection criteria used by the pastoralists to assess intangible values of their unique Ankole genetic resources.

Development of a second-generation anti-tick vaccine
In late 2004, the Swiss Centre for International Agriculture (ZIL) began funding a project conducted jointly by the Swiss Tropical Institute (Basel), Pevion Biotech (Bern), and the International Livestock Research Institute (ILRI, Nairobi), to develop an anti-tick vaccine to control ticks and tick-borne diseases of tropical cattle. Current tick-control methods rely on regular treatments of animals with acaracides, which kill the ticks. Development of an anti-tick vaccine is one of the most promising alternatives to chemical control, being much safer for the environment and human health. The only commercial vaccine against ticks currently on the market, based on a hidden tick-gut antigenic molecule, requires a series of inoculations to boost the vaccine’s effectiveness. This project is developing a novel antigen-delivery system for use in cattle using virosomes. The aim is to improve the efficiency, handling, user friendliness and cost of the existing vaccine for smallholder farmers. The technology platform developed for the new vaccine may be applied in future against a range of livestock diseases.